ABSTRACT: Head and neck squamous cell carcinoma (HNSCC) has both human papillomavirus (HPV) positive and negative etiologies. It is one of the growing number of tumors for which an anti-tumor immune response is implicated to play a role in the course of the disease as shown by responsiveness to immune-modulation using PD-1-PD-L1 inhibitors. Profiling of the tumor microenvironment including specific infiltrating lymphocyte subsets, antigen presenting cells, expression of regulatory molecules on both tumor and immune cells and spatial relationships between cells could lead to predictive signatures for responsiveness to both conventional and immune modulatory therapies. However, such profiling has previously been hindered by the need to identify such cells “in-situ” in tissue sections using multiple cell markers per cell, and limitations in available technology. The current study demonstrates Cell IDx novel UltraPlex technology, based on a simple two-step protocol using hapten labeled primary antibody cocktails followed by fluor labeled anti-hapten secondary cocktails, allowing simultaneous detection of 4 cellular markers on the same cell. Analysis of HNSCC HPV positive and negative tissue microarrays combining UltraPlex detection of multiple markers per cell together with serial sections stained with individual phenotyping panels demonstrates a powerful technique for multiplex analysis.

Cell IDx, Inc. San Diego, CA; 2 The University of Chicago, Chicago, IL

Methodologies: Primary antibodies were conjugated to 5-7 haptens/antibody. Anti-hapten antibodies were conjugated to fluorophors, Dy650, Dy505, Dy450 and Dy375. Antigen retrieval on 4-5 μm FFPE sections was performed by incubation of the slides in 0.1 M citrate, pH 6.0, in a pressure cooker for 15 min after standard deparaffinization treatment. Tissues were incubated with a cocktail of hapten-modified primary antibodies for 1 hr followed by washing and incubation with fluor labeled anti-hapten antibodies. Following washing, the slides were imaged on a IX2000 imager (www.valiseciences.com, San Diego, CA). Images were processed using ImagePro software and image analysis was performed using CyeSeer Image Analysis software (Valis Sciences).

Immune profiling of tumor infiltrating lymphocyte subsets, myeloid cells and HPV status of HNSCC biopsies using multiplex immunofluorescence

HPV Negative HNSCC

HPV Positive HNSCC

Figure 1: Schematic showing staining of tissue sections using modified hapten labeled primary antibodies and detection using four-labeled and hapten secondary antibodies.

Figure 2: Tumor phenotyping- staining of Ch5 HPV negative (left) and HPV positive (right) TMA cores for CK5 (green), EGFR (red), HPV 18 (blue) and Vimentin (blue).

Figure 3: Staining of one HPV negative and two HPV positive HNSCC TMA cores, with microarray panel to determine PD-L1 expression on tumor (pan-Ck) versus M1 (CD68+) and M2 (CD163+) macrophages (left panel) and immune cell panel to analyze CD4+ cells, CD8+FoxP3+ Tregs, CD8+ T cells, CD4+ and CD20+ B cells (right panel). Overlay of the two serial sections is shown in the center.

Figure 4: High-power views showing immune subset identification by multiplex staining.

CONCLUSION: A HNSCC TMA composed of duplicate samples of 36 HPV positive patients tumor samples (81% male, age range 45-81 years, 19% female, age range 40-90 years) and 31 HPV negative patient tumor samples (88% male, age range 25-75 years, 32% female, age range 28-80 years) were stained with multiple four-pairs panels and images from serial sections overlaid. Multiplex panels enabled tumor phenotyping for the identification of C2B, CD4 T cells, Treg cells, B cells and M1 and M2 macrophages and analysis of expression of PD-L1 on both tumor cells as well as macrophages. Leveraging this technology, different patterns of expression were observed including samples in which most PD-L1 was expressed on the tumor and others where it was predominately macrophage restricted. Levels of CD8 T cells versus Tregs cells also varied. This multiplex approach permits HPV status determination, full immune subset profiling, quantitative marker expression, relative cellular localization and potential for a correlative signature determination associated with disease outcome and response to treatment.

These studies were generously supported by the NCI via SBIR grant R44 CA203278 to Cell IDx

Cell IDx Contact Information:

www.cellidx.com
info@cellidx.com
(858) 432 5800

Cancer Immunotherapy Conference, New York, 2016